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Abstract 

 This paper proposes higher order sliding mode controller for robotic manipulator. The scheme is used to 
compensate for the influence of unmodeled dynamics and to reduce chattering. Simulation results show that the 
proposed controller gives better performance compared to fuzzy sliding mode control in the face of uncertain system 
parameters and external disturbances. 
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Introduction
Classical sliding mode control (CSMC) is a 

powerful scheme for nonlinear systems with uncertainty 
[1]. However this control scheme suffers from some 
problems like chattering. In order to guarantee the 
stability of the sliding mode system, the boundary of the 
uncertainty has to be estimated. Chattering will occur 
due to finite switching of switched controller in real time 
systems. Several approaches for reducing the chattering 
have been proposed, among which the well known one is 
to apply a saturation function [1] to the control gain 
when the sliding surface is within a boundary of the 
sliding hyper-plane. This approach leads to tracking to 
within a guaranteed precision (rather than perfect 
tracking). 

An alternative solution to reduce chattering 
phenomena is applying fuzzy logic sliding mode control 
approach or higher order sliding mode control approach 
[2]. Both approaches can reduce the chattering effect but 
the error performance is improved in higher order sliding 
mode approach. Fuzzy control offers ways to implement 
simple and robust solutions that can cope with a wide 
range of system parameters with disturbances [3]. Fuzzy 
logic has proven to be a potent tool in the sliding mode 
control of time-invariant linear systems as well as time-
varying nonlinear systems [4, 5]. This combination of 
conventional theory and fuzzy control has received a 
great deal of attention [6]. Fuzzy control has been 
demonstrated to provide a powerful tool for fine tuning 
of control algorithms based on conventional control 
theoretic approaches [7]. 

In this paper, a higher order sliding mode 
controller (HOSMC) [9, 10] for a robotic manipulator is 
proposed. The higher order switching gains are 
incorporated in the sliding mode controller to accelerate 

the state trajectories toward the sliding hyper plane. To 
demonstrate its effectiveness, the proposed HOSMC 
algorithm is applied to simulate two-link robot 
manipulator. 

This paper is organized as follows. Section II 
gives some background on robot dynamics and Classical 
Sliding Mode Control (CSMC). Section III gives sliding 
mode control with fuzzy logic implementation. Section 
IV presents higher order sliding mode control algorithm. 
In section V, the simulation studies for two-degree of 
freedom robot is illustrated and conclusions are 
presented in Section VI. 

 
Classical Sliding Mode Control for Robotic 
Manipulator 

This section briefly reviews the basic concepts 
sliding mode control for robotic manipulators. 

A. Robot Manipulator Dynamics: 
Using a Lagrangian formulation, the generalized 

forces for a n-link manipulator can be expressed as a 
second-order nonlinear differential equation [3, 4].  

 
M(q)q + C(q,q)q + G(q) = τ&& & & ( 1) 

where,q , q&  and q&& ∈ n


 are the joint position, velocity 

and acceleration vector respectively.M(q)  is an n x n 

inertial matrix, C(q,q)&  is an n x n matrix of Coriolis and 

centrifugal forces and G(q)  is an n x 1 gravity vector. 

Properties for dynamics of robot manipulators: 
Property 1: The matrix M(q)  is symmetric, positive 

definite and bounded above and below its inverse exists 
and is positive definite and bounded. 
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Property 2: The matrix  M(q) - 2C(q,q)& &  is skew, which 

suggests = +  TM C(q,q) C(q,q)& & &  

and 0Tx x  = M(q) - 2C(q,q)& & , nx∀ ∈  . 

Property 3:   The dynamic structure (1) is linear in terms 
of suitable selected set of robot and load parameters, i.e. 

= =τ M(q)q + C(q,q)q + G(q) w(q,q,q)φ&& & & & &&  where 

∈ nxrw(q,q,q)φ R& && is a nonlinear function of the 

manipulator structural dynamics and ∈ rφ R is the vector 

containing the unknown manipulator parameters which 
includes the numerical values of the masses and moment 
of inertia of the links and the payloads and the link 
dimension. 
 

B. Classical Sliding Mode Control for Robotic 
Manipulator: 

The control objective is to drive the joint position q  to 

the desired positiondq . Define the tracking error 

de = q - q    (2) 

Define the sliding surface 
.

s = e+ λe    (3) 

where 1..... .....i ndiag λ λ λ=   λ  in which iλ  is a positive 

constant. 
The control objective can be achieved by choosing the 
control input so that the sliding surface satisfies the 
sufficient condition [1]. 

 21
2

d
i i idt

s sη≤ −   (4) 

where “ iη ” is a positive constant Equation (4) indicates 

that the energy of should decay as long as is not zero. To 
setupτ , define the reference state 
 r dq = q - s = q - λe& & &  

 r dq = q - s = q - λe&& && & && &  (5) 

Choose the control input τ  

 sgn( )
^

τ = τ- K s  

 ˆ ˆˆˆ
.. .

r rτ = M q + Cq + G - As   (6) 

whereM̂ , Ĉ  and Ĝ  are the estimation matrices of M, C 
and G respectively. 

11,... ,...ii nndiag K K K=   K  is a diagonal positive 

definite matrix in which iiK  is a positive constant and 

1,... ,...i ndiag a a a=   A  is also a diagonal positive 

definite matrix in which ia  is a positive constant. 

 
 
 

Fuzzy Sliding Mode Control 
The simulation results for classical sliding mode 

control are shown in section V, where chattering effect is 
observed. The chattering is caused by the constant value 
of K and the discontinuous functionsgn( )s .one way to 

eliminate chattering is to replace sgn( )s  by s ( / )at φs  but 

this approach may introduce steady-state error into the 
sliding surface [1]. In this section, a fuzzy control gain k 
is applied to construct fuzzy sliding mode controller [4]. 

A. Introduction of Fuzzy Systems: 
Fig. 1 shows the block diagram of a typical 

fuzzy system. Usually, a fuzzy system has one or more 
inputs and a single output. A multiple-output system can 
be considered as a combination of several single-output 
systems [2]. There are four basic parts in a fuzzy system. 
The fuzzification and defuzzification are the interface 
between the fuzzy systems and the crisp systems. The 
rule base includes a set of rules extracted from the human 
experience. Each rule describes a relation between the 
input space and the output space. For each rule, the 
inference engine maps the input fuzzy sets to an output 
fuzzy set according to the relation defined by the rule. It 
then combines the fuzzy sets from all the rules in the rule 
base into the output fuzzy set. This output fuzzy set is 
translated to a crisp value output Y the defuzzification. 

 
All the four parts can be mathematically 

formulated. In this paper, by choosing singleton 
fuzzification, center average defuzzification, Mamdani 
implication in the rule base and product inference engine, 
the output of the fuzzy system can be written as 
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where 1,... ,...
Tm Mθ θ θ =

 
θ is the vector of the centers 

of the membership is functions of y, 

1( ) ( ),.... ( ),... ( )
Tm Mx x x xψ ψ ψ =

 
ψ  is the vector of the 

height of the membership functions of y in which 

( ) ( )m m
i i

* *
A A

11 1

( ) µ µ
n nM

m
i i

mi i

x x xψ
== =

= ∑∏ ∏   and M is the 

number of rules. 
 
B.  Fuzzy Sliding Mode Control: 

 
Rewriting the dynamic equation of the robotic 

manipulator 
  M(q)q + C(q,q)q + G(q) = τ&& & &   (8) 

Since the chattering caused by constant gain K and 
discontinuous functionsgn( )s , let the control gain 

sgn( )K s  can be replaced by fuzzy controller gain k in 

the control input. The new control input is then written as  
 

ˆ ˆˆ= −
.. .

r rτ M q + Cq + G - As k   (9) 

where 1,... ,...
T

i nk k k=   k with each ik is estimated by 

individual fuzzy system. 
From the knowledge of the fuzzy systems, ki can be 
written as 
  

 

( )

( )
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1 1
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1
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( )

µ

i

i i

nM
m
k i

Tm i
i k k iM

i
m

s

k s

s

θ
= =

=

= =
∑ ∏

∑
θ ψ   (10) 

where 1 ,... ,...
i i i i

Tm M
k k k kθ θ θ =

 
θ ,

1( ) ( ),.... ( ),... ( )
i i i i

Tm M
k i k i k i k is s s sψ ψ ψ =

 
ψ and  

( ) ( )m iA
1

( ) µ s µ
i

m

M
m
k i i

m A

s sψ
=

= ∑ . 
ikθ is chosen as the 

parameter to be updated and therefore is called the 
parameter vector. ( )

ik isψ is called the function basis 

vector and can be regarded as the weight of the 
parameter vector. 

 
Higher Order Sliding Mode Control 

A sliding-mode controller of a new type is 
proposed in this note, being a feedback function of 

. ..
( 1), , ,....., rσ σ σ σ − continuous everywhere except the 

manifold defined by the equations [9].  
. ..

( 1)..... 0rσ σ σ σ −= = = = =   (11) 
The mode 0σ ≡  is established after a finite-time 
transient. In the presence of errors in evaluation of the 
output σ  and its derivatives, a motion in some vicinity 
of (11) takes place. Therefore, control is practically a 
continuous function of time, for the trajectory never hits 
the manifold (11) with r > 1.  
 
Following are controllers with 3r ≤  [9] . 
 
1)  u signα σ= − ; 

2)   
1 1

2 2
. .

u signα σ σ σ σ σ
  = − + +  

   
; 

3)
1 1

2 2
2 2 2

3 3 3
.. . . .. .

2 2u signα σ σ σ σ σ σ σ σ σ
−          = − + + + + +    

          

 
The control is a continuous function of time everywhere 
except the r-sliding set (1). 
 

A. Controller design for Robotic 
Manipulator: 

Rewriting the dynamic equation of the robotic 
manipulator 

 M(q)q + C(q,q)q + G(q) = τ&& & &   (12) 

Define dσ = e = q - q   (13) 

 Choose the control input τ  as 
 ˆ sτ = τ + τ   (14) 

Where τ̂  is same as chosen in Conventional Sliding 
Mode Control and sτ  is selected using r – sliding 

controller. Since the relative degree for robotic 
manipulator is 2, we chosen sτ  as given below. 

 ( ) ( )1 1
2 2signα= −sτ σ + σ σ σ + σ& &  (15). 

 
Simulation Results 
A. Classical Sliding Mode Control: 

The classical sliding mode control is simulated 
for a two-link robotic manipulator whose parameter 
matrices are as follows [3]. 
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( ) ( ) ( )
( )

1 2 1 1 2 2 2 1

2 2 2 1

cos cos

cos

m m ga q m ga q q

m ga q q

 + + +
=  +  

G(q)  

    (16) 

Where 1m  and 2m  are the mass, and 1a and 2a are the 

length of the links 1 and 2, respectively. They are chosen 

as 1m = 0.8 Kg, 2m =2.3Kg, 1a =1m, 2a =1m and 

g =9.8m/s2. the control input τ  chosen as in (6), where 

[ ]1,1diag=λ , [ ]1,1diag=A , [ ]20,10diag=K  and 

[ ]sin( ) cos( )
T

t t=dq .In the simulation, the system 

model for the control input is estimated by applying a 
factor to the corresponding parameter matrices of the 

original system, i.e, 11 11
ˆ 0.95M M= , 12 12

ˆ 0.95M M= , 

21 21
ˆ 0.95M M= , 22 22M̂ M= , Ĉ C= and ˆ 0.95G G= . 
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Fig.3. Tracking of joint 1 in the CSMC. 
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Fig.4. Actuator Torque Response of joint 1 in CSMC. 
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Fig.5. Tracking of joint 2 in the CSMC 
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Fig.6. Actuator Torque Response of joint 2 in CSMC 
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Fig.7. Tracking errors e1 and e2 in CSMC 

 
B. Fuzzy and Higher Order Sliding Mode Control: 
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Fig.8. Tracking of joint 1 in FSMC and HOSMC. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
Errors of joint angle 1

Time (sec)

er
ro

r 
of

 jo
in

t 
1 

(r
ad

)

HOSMC

FSMC

 
Fig.9. Tracking errors of joint 1 in FSMC and HOSMC 
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Fig.10. Actuator Torque Response of joint 1 in FSMC and 

HOSMC 
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Fig.11. Tracking of joint 2 in FSMC and HOSMC 
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Fig.12. Tracking error of joint 2 in FSMC and HOSMC 
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Fig.13. Actuator Torque Response of joint 2 in FSMC and 

HOSMC 
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Significantly 
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Conclusions 

A higher order sliding mode controller for a 
two-link robot manipulator has been proposed. This  
approach provides robustness in the face of uncertainty. 
The performance of the higher order sliding mode 
controller is compared with a fuzzy sliding mode 
controller and conventional sliding mode controller on a 
nonlinear model of a two link robot. It is clear from the 
simulation results that the proposed control algorithm 
gives better performance. Further research work is being 
done in the area of discrete time higher order sliding 
mode control. 
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